Logo audio valvole
Banner Audiovalvole
Gruppo Facebook Audio Valvole il sito degli appassionati di elettronica valvolareCompra Audiovalvole eBook su lulu.com
Audio Valvole:Pagina Consigliata
--->Pagina consigliata: Menu Misure
Versione stampabile
Versione stampabile della pagina

Protocollo di verifica degli amplificatori audio HI-FI

Indice Argomento Corrente
1) Introduzione
2) Strumenti Necessari
3) Guadagno di tensione e massima potenza in uscita di un amplificatore
4) Banda passante di un amplificatore
5) Misura dell’impedenza di ingresso di un amplificatore
6) Misura dell’impedenza di uscita di un amplificatore
7) Fattore di smorzamento
8) Misura della distorsione armonica
9) Misura della distorsione di fase
10) Misura della Diafonia
11) Misura del rapporto Segnale/Rumore

Le misure delle caratteristiche dell'amplificatore sono quelle contrassegnale con i numeri 3) 4) 5) 6) 7).
Le misure mirate a determinare la qualità dell'amplificatore sono quelle contrassegnate con i numeri 8) 9) 10) 11).

Introduzione

Per verificare la qualità di un amplificatore e per avere dei termini di paragone occorre avere dei valori da confrontare aldilà dell’orecchio dell’ascoltatore che rimane pur sempre un mezzo valido in un confronto diretto.
Quelle di seguito illustrate sono una serie di prove che danno un quadro completo della qualità dell’amplificatore.
In questo capitolo si tratta l'amplificatore nel suo complesso, se volete eseguire delle misure sulle singole valvole per ricavarne i parametri di funzionamento, andate al capitolo musure sulle valvole.

Strumenti Necessari

Al fine di eseguire questo genere di misure, non occorrono strumenti particolari, per lavorare sulle frequenze audio ci possiamo accontentare di strumenti poco costosi e facilmente reperibili a basso prezzo.

Elenco degli stumenti:
a) Generatore di B.F. (da 5Hz a 50KHz) o, molto meglio, un generatore di funzioni.
b) Voltmetro RMS (ovvero che misurano il valore efficace della tensione, può andare bene anche un tester , ma occorre controllarne la risposta in frequenza).
Nel caso la risposta in frequenza dello strumento sia insufficiente occorre usare una sonda raddrizzatrice.
c) Un Oscilloscopio doppia traccia (Basta un 10/20MHz), oppure un oscilloscopio software per computer come il Picoscope o Visual Analizer.
d) Alcune resistenze di carico (dipende da cosa si misura, per i finali di potenza 4-8-16 Ohm per i preamplificatori diversi KOhm), possibilmente antinduttive e della potenza necessaria, si reperiscono in qualsiasi negozio di materiale elettronico e costano poco.
Per i finali di potenza le misure vengono sempre eseguite con un carico fittizio principalmente per due motivi: prima di tutto perchè utilizzando dei diffusori acustici come carico le misure non sarebbero riproducibili in quanto ogni diffusore ha la sua caratteristica di impedenza al variare della frequenza e anche in funzione di eventuali risonanze legate all'ambiente, quindi avremo delle misure riproducibili solo utilizzando lo stesso diffusore nello stesso ambiente.
Secondo per motivi pratici.
Il diffusore pilotato per alcune misure alla massima potenza produce un rumore insopportabile.
Per i preamplificatori è meglio utilizzare una decade resistiva che simula tutte le possibili impedenze necessarie alla misura.

Impiego di un computer: In quasi tutti i casi come strumento per rimpiazzare l'oscilloscopio e il generatore di funzioni, si può usare un computer portatile (o fisso ma è più scomodo e ha l'ingresso riferito a massa che può dare problemi) con una discreta scheda audio (che campioni alla frequenza più alta possibile con almeno 16bit), in cui useremo l'ingresso aux per la sonda dell'oscilloscopio (doppia traccia, una traccia per canale audio) e l'uscita per le cuffia come uscita per il segnale del generatore di funzioni.
Esistono poi tutta una serie di programmi che implementano via software l'oscilloscopio e il generatore di funzioni, di ottima qualità e che permettono di fare misure dirette della distorsione armonica e di altri parametri.
Una ulteriore funzione normalmente disponibile è l'analizzatore di spettro audio.
Vi consiglio caldamente questa soluzione, più economica e pratica.

Guadagno di tensione e massima potenza in uscita di un amplificatore

La figura di seguito riportata illustra la disposizione circuitale per eseguire la misura del guadagno di un amplificatore.
Come si può notare gli unici strumenti indispensabili sono un generatore di Bassa Frequenza e un Oscilloscopio.
Il voltmetro Vi è necessario se non si conosce il valore della tensione di uscita del Generatore B.F.
(In alcuni casi lo strumento è già integrato nello stesso, oppure si può usare l’Oscilloscopio spostando il puntale o usando la seconda traccia).
Il Voltmetro Vu serve nel caso si voglia avere il valore della tensione di uscita senza dover fare dei calcoli con l’oscilloscopio.
Scendendo in dettaglio occorre:

Circuito di prova di un amplificatore per determinarne il guadagno e la potenza massima

Come si procede:

A questo punto possiamo determinare il guadagno di tensione:
Gv=Vu/Vi dove
Gv è il guadagno espresso in volte (numero puro perché generato dal rapporto fra due grandezze di misura uguali ) dell’amplificatore
Vu è la tensione in uscita espressa in Volt
Vi è la tensione in ingresso espressa in Volt
Possiamo altresì determinare la massima tensione applicabile all’ingresso (la tensione per cui si ottiene la massima potenza dell’Amplificatore).
Per determinare la massima potenza ottenibile in uscita si ricorre alla seguente formula:
Pumax=Vumax(Vumax/Rc) dove
Pumax è la massima potenza in uscita espressa in Watt
Vumax è la massima tensione in uscita in condizione di linearità (precedentemente misurata), espressa in Volt
Rc è la resistenza di carico espressa in Ohm
NOTA: La potenza massima Pumax così ottenuta non è la potenza efficace ma di picco.
Per ottenere la potenza efficace (RMS) occorre usare Vueff invece di Vumax che si ottiene Vumax/radice quadrata di 2, quindi Pueff=Vueff(Vueff/Rc)

Misura della potenza massima di un amplificatore

Come è possibile notare il guadagno dell’amplificatore si mantiene lineare fino a che la tensione in ingresso è più bassa della massima tensione applicabile.
Ciò è anche dovuto al fatto che oltre un certo limite la tensione ai capi del primario del trasformatore di uscita (adattatore di impedenza) diventa di valore paragonabile a quella di alimentazione.

Banda passante di un amplificatore

Per rilevare la banda passante la configurazione circuitale e gli strumenti utilizzati sono gli stessi che si sono usati nella prova precedente.
Come si procede:

Misura della Banda Passante di un Amplificatore

Vumax è la massima tensione in uscita che normalmente corrisponde al centro della banda passante.
Vumax/Radice di 2 è la tensione corrispondente alle frequenze limite della banda passante, f1 è la frequenza di taglio inferiore, f2 è la frequenza di taglio superiore.
Da notare che per le ascisse si e usata una scala logaritmica per avere una rappresentazione più leggibile sulle basse frequenze.

Questo è il metodo canonico per misurare la banda passante, ne esiste un altro un po' meno preciso ma molto più rapido che consiste nel mandare del rumore bianco all'ingresso dell'amplificatore e collegare all'uscita un analizzatore di spettro.

Misura dell’impedenza di ingresso di un amplificatore

Nella maggior parte dei casi l’impedenza di ingresso di un amplificatore a valvole è molto alta ed è dovuta alla resistenza posta all’ingresso fra griglia e massa, valore in genere noto.
Quindi questa misura risulta inutile.
Nel caso di un amplificatore con uno stadio di ingresso più complesso in ogni caso si può misurare usando la disposizione circuitale della figura in basso tenendo conto che per avere una misura precisa la resistenza Rs deve avere un valore dello stesso ordine di grandezza della resistenza di ingresso che vogliamo misurare, quindi se non si conosce si va per tentativi sostituendo la resistenza Rs durante la misura.
Il modo di operare è il seguente:

Misura della resistenza di ingresso di un amplificatore

V1=tensione con l’interruttore chiuso
V2=tensione con l’interruttore aperto
Vrs=V1-V2
Irs=Vrs/Rs
Ri=V2/Irs
Come si vede è un metodo estremamente semplice, e si parte dal presupposto che la resistenza interna del generatore di segnale sia trascurabile rispetto alle altre due.
L'oscilloscopio viene utilizzato in questo caso per verificare che il segnale in uscita si mantenga indistorto e per misurare la tensione in ingresso per avere un metodo semplice per verificare che la lettura del voltmetro sia corretta.

Misura dell’impedenza di uscita di un amplificatore

Questa misura serve per determinare che tipo di carico si può pilotare con l’amplificatore, e per verificare il corretto adattamento di impedenza.
In dettaglio, per avere un buon trasferimento di potenza sul carico occorre che l’impedenza dell’amplificatore e quella del carico siano uguali, in realtà il carico è costituito da una cassa acustica o da un paio di cuffie che non hanno una impedenza costante per tutte le frequenze della banda passante, quindi occorre che l’impedenza di uscita dell’amplificatore sia almeno uguale alla minima impedenza del carico per frequenze comprese fra 20Hz e 20KHz.
Gli strumenti occorrenti sono i seguenti:

Di seguito è riportata la disposizione circuitale per relevare la resistenza di uscita di un amplificatore.

Misura della Impedenza di uscita di un amplificatore

Il voltmetro Vi misura la tensione di ingresso dell'amplificatore, Vu la tensione di uscita.
Rs è una resistenza in serie escludibile con un commutatore di valore 1/10 di Rc (il basso valore è fondamentale per non alterare troppo i parametri di funzionamento dell'amplificatore).
Vc è la tensione sulla resistenza Rc.

Si procede nel seguente modo:

Tutto questo, nel caso di un amplificatore valvolare, per non perturbare il punto di lavoro della valvola termoionica quando si effettua la misura.
Nel caso di un amplificatore di altro tipo sarebbe stato sufficiente fare la misura della tensione a vuoto (con una Rc molto più alta del carico abituale) e sotto carico e in questo modo determinare Ru tenendo conto dell'abbassamento della tensione di uscita e della corrente che passa su Rc.

NOTA: Il voltmetro Vc e l’oscilloscopio eseguono la misura della stessa tensione, quindi la misura risulta ridondata, l’oscilloscopio ci permette anche di verificare la forma d’onda che può essere utile per evidenziare malfunzionamenti.

Impedenza di uscita di un amplificatore: calcolo del fattore di smorzamento (Damping Factor)

Per Damping Factor (DF) si intende il rapporto fra l'impedenza del carico dell'amplificatore e la sua resistenza interna.
In un amplificatore finale collegato a dei diffusori il DF è considerato la misura dell'attitudine dell'amplificatore di controllare movimenti indesiderati della membrana degli altoparlanti in prossimità della frequenza di risonanza degli stessi.

Una volta determinata l'impedenza di uscita si tratta di un semplice calcolo matematico.
DF=Rc/Ru dove Rc è la resistenza del carico dell'amplificatore ed Ru è la resistenza di uscita dello stesso.

Misura della distorsione armonica

Per effettuare questa misura occorre un distorsimetro oppure un analizzatore di spettro che sono strumenti non di comune utilizzo, tuttavia queste sono misure che allo stato attuale possono essere fatte anche con un oscilloscopio campionatore dotato di opportuno software oppure con un computer dotato di scheda audio e apposito software di analisi. In ogni caso la disposizione circuitale e quella riportata nella figura sottostante.

Misura della distorsione di un amplificatore

Il Generatore B.F. deve produrre un segnale sinusoidale a bassa distorsione.
Se non è così occorre collegarlo direttamente al distorsimetro e misurare la distorsione dell’onda in uscita per tutte le misure che si vogliono effettuare.
Visto e considerato che la distorsione aumenta in funzione della potenza di uscita è opportuno fare delle misure a metà potenza e alla potenza massima.

Il modo di operare è il seguente:

Misura della distorsione di fase con oscilloscopio a doppia traccia

In un amplificatore a causa delle componenti reattive di alcuni dei componenti (condensatori, induttanze, trasformatori) si verificano degli spostamenti di fase fra il segnale in ingresso e quello in uscita che possono, in alcuni casi, mettere in crisi il circuito di controreazione.

Il circuito di misura è il seguente:

Misura della distorsione di un amplificatore

la misura eseguita con l’oscilloscopio non ha precisione, quindi ha carattere puramente indicativo e di controllo dell’amplificatore.
Ha senso effettuare tale misura solo alle frequenze estreme di funzionamento (20Hz-20Khz), tuttavia a scopo di controllo occorre verificare anche dentro l’intervallo di tali frequenze per evidenziere fenomeni di risonanza di componenti reattivi che possono causare localizzate, ma pericolose rotazioni di fase.

Il modo di operare è il seguente:

Misura dello sfasamento della tensione fra ingresso e uscita in un amplificatore

Nell’esempio della foto lo sfasamento di Vu rispetto a Vi è in anticipo di un valore indicativo compreso fra 45° e 90°, per ottenere una maggior precisione occorre fare una misura più accurata usando il reticolo dell’oscilloscopio.
Il risultato finale sarà comunque approssimato a + o - 10°.
Ovviamente essendo una misura eseguita sull’oscilloscopio non sarà precisa ma avrà valore comparativo e indicativo.
Per avere dei dati più precisi occorre utilizzare un misuratore di fase.

Misura della distorsione di fase con l'oscilloscopio utilizzando il metodo di Lissajous

Questo metodo consiste nell’inviare il segnale di uscita dell’amplificatore all’asse y di un oscilloscopio ed il segnale d’ingresso all’asse x (vedi figura sottostante)
Nel circuito impiegato per la misura compaiono:
- G.B.F. generatore di bassa frequenza
- Oscilloscopio
Per eseguire la misura occorre inviare ai due assi dell’oscilloscopio segnali di uguale ampiezza, e allo scopo si elimina il segnale dall’asse y si regola l’attenuatore dell’asse x in modo da avere un segmento orizzontale di n divisioni poi si fa lo stesso con l’asse y escudendo l’asse x.

Misura della distorsione di fase di un amplificatore con il metodo di Lissajous
Figura di Lissajous

Tipica immagine ottenuta sull’oscilloscopio con il metodo di Lissajous.
Una volta rilevati i valori di B ed A si può risalire all’angolo di sfasamento ricorrendo alla seguente formula;
sen(angolo)=B/A.
Dal seno dell’angolo si può facilmente con qualsiasi calcolatrice scentifica risalire all’angolo di sfasamento.
Anche questa misura di fase è affetta da un certo errore dovuto alla imprecisione della lettura dei valori dall’oscilloscopio.

Misura della Diafonia

Per diafonia si intende l’influenza che uno dei due canali stereofonici può avere sull’altro, cioè la separazione tra i due canali.
Si misura in dB e rappresenta il rapporto tra un segnale presente su un canale e la quantità del medesimo segnale che viene a trovarsi sull’altro.
Minore sarà la diafonia maggiore sarà la separazione tra i due canali.
Ovviamente questa misura si esegue solo su amplificatori stereofonici.
Una misura correlata è la misura della resistenza serie dell’alimentazione che è una delle principali cause della diafonia, modulando l’alimentazione del secondo amplificatore in base all’assorbimento del primo e viceversa.
Una soluzione che risolve in parte il problema consiste nell’adottare due alimentatori e telai separati per gli amplificatori evitando così anche gli accoppiamenti parassiti per prossimità.

Misura della diafonia in un amplificatore

Come si procede:
a) Collegare gli strumenti
b) Accendere l’amplificatore e lasciarlo scaldare per almeno qualche minuto
c) Applicare all’ingresso un segnale di ampiezza pari al 50% del massimo segnale applicabile avente frequenza 1000Hz con l’interruttore aperto.
d) Misurare la tensione con l’interruttore di uscita prima di un canale poi dell’altro. Applicare la formula.

Misura del rapporto segnale/rumore (SNR=Signal-to-Noise Ratio)

Il rapporto segnale/rumore è la misura della massima tensione in uscita comparata con il rumore prodotto dall'amplificatore nella banda audio espresso in dB.
E' normalmente specificato nelle caratteristiche dell'amplificatore con riportata la potenza a cui è stata eseguita la misura.
Per eseguire la misura tutti gli ingressi dell'amplificatore non utilizzati per la misura debbono essere messi a massa.

Circuito di misura del rapporto segnale rumore

La misura in genere si effettua a centro banda, presa per convenzione a 1KHz e si procede nel modo seguente:

Una volta in possesso di questi dati si calcola il rapporto segnale rumore con la seguente formula:

Formula per calcolare il rapporto segnale rumore

Dove il logaritmo deve intendersi in base 10, Vu è la tensione all'uscita con il segnale di misura e Vn la tensione in uscita dovuta al solo rumore.

Questo procedimento ha il seguente vizio di forma: si da per scontato che il rumore all'ingresso rimanga ad un valore fisso mentre invece una componente dello stesso, quella dovuta al filtraggio dell'alimentazione è dipendente dall'assorbimento dell'amplificatore che varia notevolmente dallo stato di riposo allo stato di lavoro.
Quindi questo metodo che è quello universalmente adottato da valori tanto più imprecisi quanto più l'amplificatore eroga potenza all'uscita a parità di caratteristiche dell'alimentazione.
Per rilevare tale componente possiamo solo avvalerci di una indagine sullo spettro in uscita dell'amplificatore, quindi con un analizzatore di spetto.
Tuttavia tale rumore diventa indistinguibile dalla distorsione se non per precise frequenze che sono multipli della frequenza della rete di distribuzione dell'energia.

Inizio Pagina